国产精品久久久久久久小说,国产国产裸模裸模私拍视频,国产精品免费看久久久无码,风流少妇又紧又爽又丰满,国产精品,午夜福利

熱搜: 佳士科技  irobot  工業(yè)機(jī)器人  機(jī)器人  ABB  機(jī)器人產(chǎn)業(yè)聯(lián)盟  發(fā)那科  庫(kù)卡  碼垛機(jī)器人  機(jī)械手 

學(xué)習(xí)人工智能需要哪些必備的數(shù)學(xué)基礎(chǔ)?

   日期:2017-12-12     來(lái)源:AI前線(xiàn)    作者:dc136     評(píng)論:0    
標(biāo)簽: 人工智能
   學(xué)習(xí)人工智能該從哪里開(kāi)始呢?人工智能的學(xué)習(xí)路徑又是怎樣的?
 
  數(shù)學(xué)基礎(chǔ)知識(shí)蘊(yùn)含著處理智能問(wèn)題的基本思想與方法,也是理解復(fù)雜算法的必備要素。今天的種種人工智能技術(shù)歸根到底都建立在數(shù)學(xué)模型之上,要了解人工智能,首先要掌握必備的數(shù)學(xué)基礎(chǔ)知識(shí),具體來(lái)說(shuō)包括:
 
  線(xiàn)性代數(shù):如何將研究對(duì)象形式化?
 
  概率論:如何描述統(tǒng)計(jì)規(guī)律?
 
  數(shù)理統(tǒng)計(jì):如何以小見(jiàn)大?
 
  最優(yōu)化理論: 如何找到最優(yōu)解?
 
  信息論:如何定量度量不確定性?
 
  形式邏輯:如何實(shí)現(xiàn)抽象推理?
學(xué)習(xí)人工智能需要哪些必備的數(shù)學(xué)基礎(chǔ)?
  線(xiàn)性代數(shù):如何將研究對(duì)象形式化?
 
  事實(shí)上,線(xiàn)性代數(shù)不僅僅是人工智能的基礎(chǔ),更是現(xiàn)代數(shù)學(xué)和以現(xiàn)代數(shù)學(xué)作為主要分析方法的眾多學(xué)科的基礎(chǔ)。從量子力學(xué)到圖像處理都離不開(kāi)向量和矩陣的使用。而在向量和矩陣背后,線(xiàn)性代數(shù)的核心意義在于提供了?種看待世界的抽象視角:萬(wàn)事萬(wàn)物都可以被抽象成某些特征的組合,并在由預(yù)置規(guī)則定義的框架之下以靜態(tài)和動(dòng)態(tài)的方式加以觀察。
 
  著重于抽象概念的解釋而非具體的數(shù)學(xué)公式來(lái)看,線(xiàn)性代數(shù)要點(diǎn)如下:線(xiàn)性代數(shù)的本質(zhì)在于將具體事物抽象為數(shù)學(xué)對(duì)象,并描述其靜態(tài)和動(dòng)態(tài)的特性;向量的實(shí)質(zhì)是 n 維線(xiàn)性空間中的靜止點(diǎn);線(xiàn)性變換描述了向量或者作為參考系的坐標(biāo)系的變化,可以用矩陣表示;矩陣的特征值和特征向量描述了變化的速度與方向。
 
  總之,線(xiàn)性代數(shù)之于人工智能如同加法之于高等數(shù)學(xué),是一個(gè)基礎(chǔ)的工具集。
 
  概率論:如何描述統(tǒng)計(jì)規(guī)律?
 
  除了線(xiàn)性代數(shù)之外,概率論也是人工智能研究中必備的數(shù)學(xué)基礎(chǔ)。隨著連接主義學(xué)派的興起,概率統(tǒng)計(jì)已經(jīng)取代了數(shù)理邏輯,成為人工智能研究的主流工具。在數(shù)據(jù)爆炸式增長(zhǎng)和計(jì)算力指數(shù)化增強(qiáng)的今天,概率論已經(jīng)在機(jī)器學(xué)習(xí)中扮演了核心角色。
 
  同線(xiàn)性代數(shù)一樣,概率論也代表了一種看待世界的方式,其關(guān)注的焦點(diǎn)是無(wú)處不在的可能性。頻率學(xué)派認(rèn)為先驗(yàn)分布是固定的,模型參數(shù)要靠最大似然估計(jì)計(jì)算;貝葉斯學(xué)派認(rèn)為先驗(yàn)分布是隨機(jī)的,模型參數(shù)要靠后驗(yàn)概率最大化計(jì)算;正態(tài)分布是最重要的一種隨機(jī)變量的分布。
 
  數(shù)理統(tǒng)計(jì):如何以小見(jiàn)大?
 
  在人工智能的研究中,數(shù)理統(tǒng)計(jì)同樣不可或缺。基礎(chǔ)的統(tǒng)計(jì)理論有助于對(duì)機(jī)器學(xué)習(xí)的算法和數(shù)據(jù)挖掘的結(jié)果做出解釋?zhuān)挥凶龀龊侠淼慕庾x,數(shù)據(jù)的價(jià)值才能夠體現(xiàn)。數(shù)理統(tǒng)計(jì)根據(jù)觀察或?qū)嶒?yàn)得到的數(shù)據(jù)來(lái)研究隨機(jī)現(xiàn)象,并對(duì)研究對(duì)象的客觀規(guī)律做出合理的估計(jì)和判斷。
 
  雖然數(shù)理統(tǒng)計(jì)以概率論為理論基礎(chǔ),但兩者之間存在方法上的本質(zhì)區(qū)別。概率論作用的前提是隨機(jī)變量的分布已知,根據(jù)已知的分布來(lái)分析隨機(jī)變量的特征與規(guī)律;數(shù)理統(tǒng)計(jì)的研究對(duì)象則是未知分布的隨機(jī)變量,研究方法是對(duì)隨機(jī)變量進(jìn)行獨(dú)立重復(fù)的觀察,根據(jù)得到的觀察結(jié)果對(duì)原始分布做出推斷。
 
  用一句不嚴(yán)謹(jǐn)?shù)庇^的話(huà)講:數(shù)理統(tǒng)計(jì)可以看成是逆向的概率論。 數(shù)理統(tǒng)計(jì)的任務(wù)是根據(jù)可觀察的樣本反過(guò)來(lái)推斷總體的性質(zhì);推斷的工具是統(tǒng)計(jì)量,統(tǒng)計(jì)量是樣本的函數(shù),是個(gè)隨機(jī)變量;參數(shù)估計(jì)通過(guò)隨機(jī)抽取的樣本來(lái)估計(jì)總體分布的未知參數(shù),包括點(diǎn)估計(jì)和區(qū)間估計(jì);假設(shè)檢驗(yàn)通過(guò)隨機(jī)抽取的樣本來(lái)接受或拒絕關(guān)于總體的某個(gè)判斷,常用于估計(jì)機(jī)器學(xué)習(xí)模型的泛化錯(cuò)誤率。
 
  最優(yōu)化理論: 如何找到最優(yōu)解?
 
  本質(zhì)上講,人工智能的目標(biāo)就是最優(yōu)化:在復(fù)雜環(huán)境與多體交互中做出最優(yōu)決策。幾乎所有的人工智能問(wèn)題最后都會(huì)歸結(jié)為一個(gè)優(yōu)化問(wèn)題的求解,因而最優(yōu)化理論同樣是人工智能必備的基礎(chǔ)知識(shí)。最優(yōu)化理論研究的問(wèn)題是判定給定目標(biāo)函數(shù)的最大值(最小值)是否存在,并找到令目標(biāo)函數(shù)取到最大值 (最小值) 的數(shù)值。 如果把給定的目標(biāo)函數(shù)看成一座山脈,最優(yōu)化的過(guò)程就是判斷頂峰的位置并找到到達(dá)頂峰路徑的過(guò)程。
 
  通常情況下,最優(yōu)化問(wèn)題是在無(wú)約束情況下求解給定目標(biāo)函數(shù)的最小值;在線(xiàn)性搜索中,確定尋找最小值時(shí)的搜索方向需要使用目標(biāo)函數(shù)的一階導(dǎo)數(shù)和二階導(dǎo)數(shù);置信域算法的思想是先確定搜索步長(zhǎng),再確定搜索方向;以人工神經(jīng)網(wǎng)絡(luò)為代表的啟發(fā)式算法是另外一類(lèi)重要的優(yōu)化方法。
 
  信息論:如何定量度量不確定性?
 
  近年來(lái)的科學(xué)研究不斷證實(shí),不確定性就是客觀世界的本質(zhì)屬性。換句話(huà)說(shuō),上帝還真就擲骰子。不確定性的世界只能使用概率模型來(lái)描述,這促成了信息論的誕生。
 
  信息論使用“信息熵”的概念,對(duì)單個(gè)信源的信息量和通信中傳遞信息的數(shù)量與效率等問(wèn)題做出了解釋?zhuān)⒃谑澜绲牟淮_定性和信息的可測(cè)量性之間搭建起一座橋梁。
 
  總之,信息論處理的是客觀世界中的不確定性;條件熵和信息增益是分類(lèi)問(wèn)題中的重要參數(shù);KL 散度用于描述兩個(gè)不同概率分布之間的差異;最大熵原理是分類(lèi)問(wèn)題匯總的常用準(zhǔn)則。
 
  形式邏輯:如何實(shí)現(xiàn)抽象推理?
 
  1956 年召開(kāi)的達(dá)特茅斯會(huì)議宣告了人工智能的誕生。在人工智能的襁褓期,各位奠基者們,包括約翰·麥卡錫、赫伯特·西蒙、馬文·閔斯基等未來(lái)的圖靈獎(jiǎng)得主,他們的愿景是讓“具備抽象思考能力的程序解釋合成的物質(zhì)如何能夠擁有人類(lèi)的心智。”通俗地說(shuō),理想的人工智能應(yīng)該具有抽象意義上的學(xué)習(xí)、推理與歸納能力,其通用性將遠(yuǎn)遠(yuǎn)強(qiáng)于解決國(guó)際象棋或是圍棋等具體問(wèn)題的算法。
 
  如果將認(rèn)知過(guò)程定義為對(duì)符號(hào)的邏輯運(yùn)算,人工智能的基礎(chǔ)就是形式邏輯;謂詞邏輯是知識(shí)表示的主要方法;基于謂詞邏輯系統(tǒng)可以實(shí)現(xiàn)具有自動(dòng)推理能力的人工智能;不完備性定理向“認(rèn)知的本質(zhì)是計(jì)算”這一人工智能的基本理念提出挑戰(zhàn)。
 
 
更多>相關(guān)資訊
0相關(guān)評(píng)論

推薦圖文
推薦資訊
點(diǎn)擊排行